Knowledge distillation

Traditional vs LLM Recommender Systems: Are They Worth It?

Traditional vs LLM Recommender Systems: Are They Worth It?

This summary explores Arpita Vats's insights on how Large Language Models (LLMs) are revolutionizing recommender systems. It contrasts the traditional feature-engineering-heavy approach with the contextual understanding of LLMs, which shifts the focus to prompt engineering. Key challenges like inference latency and cost are discussed, along with practical solutions such as lightweight models, knowledge distillation, and hybrid architectures. The conversation also touches on advanced applications like sequential recommendation and the future potential of agentic AI.